skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 3, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. As inverter-based resources (IBRs) penetrate power systems, the dynamics become more complex, exhibiting multiple timescales, including electromagnetic transient (EMT) dynamics of power electronic controllers and electromechanical dynamics of synchronous generators. Consequently, the power system model becomes highly stiff, posing a challenge for efficient simulation using existing methods that focus on dynamics within a single timescale. This paper proposes a Heterogeneous Multiscale Method for highly efficient multi-timescale simulation of a power system represented by its EMT model. The new method alternates between the microscopic EMT model of the system and an automatically reduced macroscopic model, varying the step size accordingly to achieve significant acceleration while maintaining accuracy in both fast and slow dynamics of interests. It also incorporates a semi-analytical solution method to enable a more adaptive variable-step mechanism. The new simulation method is illustrated using a two-area system and is then tested on a detailed EMT model of the IEEE 39-bus system. 
    more » « less
    Free, publicly-accessible full text available February 6, 2026
  4. Transport of elementary excitations is a fundamental property of two-dimensional (2D) semiconductors, essential for wide-ranging phenomena and device applications. Although exciton transport reported in 2D materials barely exceeds 1 to 2 micrometers, coherent coupling of excitons with photons to form polaritons enables extended transport lengths and offers opportunities to use photonic mode engineering for tailored transport. Conventional vertical cavity or waveguide polaritons, however, are challenging to tune and integrate into photonic circuits. We report the transport of transition metal dichalcogenide polaritons in 2D photonic crystals that are highly versatile for tuning, mode engineering, and integration. We achieve an order-of-magnitude enhancement in transport length compared to bare excitons and reveal transport dependence on polariton dispersion and population dynamics, which are controlled via photonic crystal design and pump intensity. Stimulated relaxation observed in the system suggests the potential for forming superfluid polaritons with frictionless transport. These findings establish 2D photonic crystal polaritons as a versatile platform for advancing photonic energy transport technologies. 
    more » « less
    Free, publicly-accessible full text available May 23, 2026
  5. In a power system, when the participation factors of generators are computed to rank their participations into an oscillatory mode, a model-based approach is conventionally used on the linearized system model by means of the corresponding right and left eigenvectors. This paper proposes a new approach for estimating participation factors directly from measurement data on generator responses under selected disturbances. The approach computes extended participation factors that coincide with accurate model-based participation factors when the measured responses satisfy an ideally symmetric condition. This paper relaxes this symmetric condition with the original measurement space by identifying and utilizing a coordinate transformation to a new space optimally recovering the symmetry. Thus, the optimal estimates of participation factors solely from measurements are achieved, and the accuracy and influencing factors are discussed. The proposed approach is first demonstrated in detail on a two-area system and then tested on an NPCC 48-machine power system. The penetration of inverter-based resources is also considered. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. Free, publicly-accessible full text available May 1, 2026
  7. This paper proposed an energy function-embedded quasi-steady-state model for efficient simulation of cascading outages on a power grid while addressing transient stability concerns. Compared to quasi-steady-state models, the proposed model incorporates short-term dynamic simulation and an energy function method to efficiently evaluate the transient stability of a power grid together with outage propagation without transient stability simulation. Cascading outage simulation using the proposed model conducts three steps for each disturbance such as a line outage. First, it performs time-domain simulation for a short term to obtain a post-disturbance trajectory. Second, along the trajectory, the system state with the local maximum potential energy is found and used as the initial point to search for a relevant unstable equilibrium by Newton's method. Third, the transient energy margin is estimated based on this unstable equilibrium to predict an out-of-step condition with generators. The proposed energy function-embedded quasi-steady-state model is tested in terms of its accuracy and time performance on an NPCC 140-bus power system and compared to a quasi-steady-state model embedding transient stability simulation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026